Status and trends of development of the production of cold-rolled tubes from titanium alloys

Шрифт:
191

https://doi.org/10.15407/pmach2019.03.058
Met. litʹe Ukr., 2019, Tom 310-311, №3-4, с.58-68

O.V. Mishchenko Applicant, e-mail: mishchenkooleksii@gmail.com
National Metallurgical Academy of Ukraine, Dnipro, Ukraine

UDC 621.774

Summary:

Status and trends in the development of the production of cold-rolled pipes from titanium-based alloys are analyzed. The modern standards used at the enterprises in the production of cold-formed pipes from titanium alloys are given. In the course of analyses, a comparison of the two types of modern enterprises for the production of cold-deformed pipes from titanium alloys was made and an assumption was made about the trends of development of enterprises in the future. The regularities are revealed and the principles of development of manufacturing routes based on the features of pipes from titanium-based alloys are formulated. The influence of the main parameters of the technology on the production efficiency and quality of the finished pipe products is shown. The mode of cold pilger rolling tubes of titanium-based alloys is recommended that contribute to reducing the number of cyclic rolling, reducing the expenditure ratio of the metal, obtaining the required level of mechanical properties and receiving the required level the accuracy of the manufactured products. The issues of not only the accuracy of the pipes, but also the billet used in the manufacture of cold-rolled pipes from titanium alloys are considered. The features of the wall thickness variations for each type of billet used in enterprises are described. The recommendations on the depth of removal of the surface layer of scale between rolling are given. The influence of such parameters as divisibility of deformation, total reduction of the cross-section, move and rotation of a pipe in the rolling process, the choice a lubricant and method of its application on the pipe, the temperature at a deformation zone, the gas saturation of the surface and their influence on pipe accuracy are analyzed. Recommendations on these parameters are given to improve the quality of pipes made of titanium alloys with a description of the limitations caused by the characteristics of the alloys.

Keywords:

Pipes, titanium, alloys, cold rolling of pipes, technology, modes.

REFERENCES:

  1. Orro, P.I., Osada, Ya. E. (1951). Production of steel thin-walled pipes. Moscow, Khar’kov: Metallurgizdat, 416 p. [in Russian].
  2. Koff, Z.A. (1962). Cold pipe rolling. Sverdlovsk: Metallurgizdat, 300 p. [in Russian].
  3. Stoletniy, M.F., Klempert, E.D. (1975). Precision of tubes. Moscow: Metallurgiya, 239 p. [in Russian].
  4. Orlov, G.A. (2001). Fundamentals of the theory of pipe accuracy. Ekaterinburg: UGTU-UPI, 105 p. [in Russian].
  5. Danchenko, V.N., Kolikov, A.P., Romantsev, B.A. et al. (2002). Pipe production technology. Moscow: Intermet Inzheniring, 638 p. [in Russian].
  6. Frolov, V.F., Danchenko, V.N., Frolov, Ya.V. (2005). Cold pilger tube rolling. Dnepropetrovsk: Porogi, 255 p. [in Russian].
  7. Kuznetsov, Ye.D. (2005). Development of the theory and practice of production of precision steel pipes. Sistemnye tekhnologii. Nauchnyye trudy pod red. V.N. Danchenko. Dnepropetrovsk, pp. 232–259 [in Russian].
  8. Popov, M.V., Atanasov, S.V., Belikov, Yu.M. (2008). Improving the process of periodic rolling tubes. Dnepropetrovsk: “Diva”, 192 p. [in Russian].
  9. Analysis of the main production technologies of cold-formed pipes. URL: http://metalat.ru/analvtics/70-analiz-osnovnvhtehnologiy-proizvodstva-holodnodeformirovannvh-trub.html [in Russian].
  10. Galitskiy, B.A., Abelev, M.M., Shvarts, G.L., Shevelkin, B.N. (1968). Titanium and its alloys. Moscow: Mashinostroenie, 340 p. [in Russian].
  11. Glikman, L.A., Deryabina, V.I., Kolgatin, N.N. et al. (1963). The effect of the gas-saturated layer on the strength and plastic properties of titanium alloys. Sbornik: Titan i ego splavy. Vypusk X. Issledovanie titanovykh splavov. Moscow: AN SSSR, pp.116–130 [in Russian].
  12. Ostrenko, V.Ya., Bogoyavlenskaya, N.V., Bobrikov, L.D. et al. (1963). Development of production technology for pipes from titanium alloy AT-3. Sbornik: Titan i ego splavy. Vypusk X. Issledovanie titanovykh splavov. Moscow: AN SSSR, pp. 254–261 [in Russian].
  13. Shelest, A.E., Falaleyeva, Z.S., Pavlov I.M. (1963). Change in mechanical properties of AT-3 alloy after cold deformation and annealing. Sbornik: Titan i ego splavy. Vypusk X. Issledovanie titanovykh splavov. Moscow: AN SSSR, pp. 245–250 [in Russian].
  14. Shilov, V.I., Korzh, V.P., Odinokova, L.I. (1963). Study of cold rolling strip of titanium alloys. Sbornik: Titan i ego splavy. Vypusk X. Issledovanie titanovykh splavov. Moscow: AN SSSR, pp.265–276 [in Russian].
  15. Ostrenko, V.Ya., Akimova, Ye.P., Il’vovskaya, L.A. (1963). The study of the properties of titanium alloy AT-4 in relation to the conditions of pipe production. Sbornik: Titan i ego splavy. Vypusk X. Issledovanie titanovykh splavov. Moscow: AN SSSR, pp. 357–361 [in Russian].
  16. Kosmatskiy, Ya.I., Fokin, N.V., Filyayeva, E.A., Borichko, B.V. (2017). Investigation of the deformation capacity of a tubular billet of titanium alloy grade PT-1M. Vestnik YuUrGU. Seriya “Metallurgiya”. Vol. 17, no. 4, pp. 83–91 [in Russian].
    https://doi.org/10.14529/met170409
  17. Serikov, S.V., Ustinov, I.K., Churkin, I.D. (2011). About the peak plasticity of titanium alloys. Vestnik MGTU im. N.E. Baumana. Seriya “Mashinostroenie”, pp. 201–209 [in Russian].
  18. Tret’yakov, A.V., Zyuzin, V.I. (1973). Mechanical properties of metals and alloys during pressure treatment. Moscow: Metallurgiya, 224 p. [in Russian].
  19. Mazur, V.L., Timoshenko, V.I. (2018). Theory and technology of rolling hydrodynamic effects of lubrication and surface microrelief. Kyiv: ID “ADEFUkraina”, 560 p. [in Russian].
  20. Mazur V.L., Nogovitsyn A.V. (2019). Theory and Technology of Sheet Rolling (Numerical Analysis and Applications). CRS Press, Taylor and Francis Group, 479 p [in English].
    https://doi.org/10.1201/9781351173964
  21. Mazur, S.V. (2005). Statement of the problem and the regularity of the lubricant flow in the deformation zone during pipe rolling. Suchasní problemy metalurgíí, Naukoví vístí, Vol. 8, Plastichna deformatsíya metalív, Dnípropetrovs’k: “Sistemní tekhnologíí”, pp. 447–452 [in Russian].
  22. Mazur, S.V. (2005). Patterns of receipt of lubricant in the deformation zone during pipe rolling. Metallurgicheskaya i gornorudnaya promyshlennost’, no. 4, pp. 59–65 [in Russian].
  23. Mazur, V.L., Nogovitsyn, A.V. (2010). Theory and technology of sheet rolling (numerical analysis and technical applications). Dnepropetrovsk: RVA “Dnípro-VAL”, 500 p. [in Russian].
  24. Kuznetsov, D.E. (2012). The influence of friction on the surface quality of cold-formed pipes. Stal’, no. 5, pp. 42–46 [in Russian].
    https://doi.org/10.3103/S0967091212050075
  25. Danchenko, V.N., Frolov, Ya.V., Frolov. V.F. (2005). Cold pilger tube rolling. Dnepropetrovsk: Porogi, 255 p. [in Russian].
  26. Kucherenko, V.R., Khaustov, G.I., Korobochkin, I.Yu., Kekukh, S.N. (1979). The effect of reduction on the quality of the inner surface of pipes during cold rolling. Metallurgicheskaya i gornorudnaya promyshlennost’, no. 2, pp. 19–20 [in Russian].
  27. Semenov, O.A., Plyatskovskiy, O.A., Popov, M.V. et al. (1974). On the permissible degree of reduction when rolling extra thickwalled pipes. Metallurgicheskaya i gornorudnaya promyshlennost’, no. 5, pp. 27–28 [in Russian].
  28. Pilipenko, S.V. (2016). Investigation of changes in pipe pipe razgneseniya during rolling on the HPT. Stal’, no. 3, pp. 32–37 [in Russian].
  29. Frolov, Ya.V., Dekhtyarev, V.S. (2009). Development of calibration methods for HPT mills. Metallurgicheskaya i gornorudnaya promyshlennost’, no. 2, pp. 52–54 [in Russian].
  30. Grigorenko, V.U., Pilipenko, S.V., Golovchenko, O.P. (2015). Development of the method of calculating the parameters of the process of cold rolling mill rolling and instrument calibration. Dnípropetrovs’k: Porogi, 128 p. [in Ukrainian].
  31. Mishchenko, A.B., Grigorenko, V.U. (2016). Development of a method for predicting changes in the cross-fractions with multipass rolling of pipes from titanium-based alloys on cold rolling mills. Sbornik “Obrabotka materialov davleniem”, Kramatorsk, no. 1(42), pp. 199–202 [in Russian].
  32. Grigorenko, V.U., Klimenko, P.L., Khanin, M.I. (2000). Calibration and effort calculations in cold rolling mills using a computer. Dnepropetrovsk: NMetAU, 22 p [in Russian].
  33. Shevakin, Yu.F. (1963). Calibration and forces in Cold Rolling. Moscow: Metallurgizdat, 269 p. [in Russian].
  34. Korobochkin, I.Yu. (2001). Some issues calibration tool mills cold periodic rolling tubes. Problemy í perspektyvy oderzhannya konkurentozdatnoí produktsíí v gírnicho-metalurgíynomu kompleksí Ukraíny: tematych. zb. nauk. Prats’, Dnípropetrovs’k: NMetAU, pp. 515–528 [in Russian].
  35. Grigorenko, V.U., Pilipenko, S.V., Golovchenko, O.P. (2015). Development of the method of calculation of parameters of the process of cold rolling mill rolling and tool calibration. Dnípropetrovs’k: Porogi, 120 p. [in Ukrainian].