Practical recommendations on the organization of production of metal ribbon from a melt

Шрифт:
442

Srebriansky G.

https://doi.org
UDC 669.046:539.213

Summary:

The article provides an explanation of the term «rapidly-quenched alloys», their range and areas of application are indicated. It is shown that the most common assortment of these materials is a ribbon with a thickness of 20-100 microns, obtained by the single-roll casting method. The technologies of its obtaining, which differ by the mass of the casting metal in one cycle, are considered. The description of the relevant installations is given. The organization of production of a rapidly quenched ribbon requires a certain amount of experience and knowledge, as it contains a number of «know-how». An optimal approach to the organization of such production and its approximate structure are proposed. Necessary technical and organizational actions at the main production phases are described. It is shown that the technology of obtaining a strip from a melt is a new metallurgical high, energy-saving and promising technology that allows producing a wide range of products that are competitive on the world market. In addition, the presence of such a promising production raises the prestige of the country and meets the plan for its strategic development.

Keywords:

Rapidly quenched alloys, ribbon, melt, single-roll casting, assortment, energy-efficient technology

REFERENCES:

  1. Srebrianskiy G. A., Stovpchenko A. P. (2004). Novyi podkhod k polucheniiu poroshkovykh materialov [A new approach to the preparation of powder materials]. Materialy V Międzynarodowej Sesji Naukowej "Nowe Technologie i Osiągnięcia w Metalurgii, Inżynierii Materiałowej", (Польша), Politechnika Częstochowska, Widawnictwo Wipmifs (Poland), Widawnictwo Wipmifs, pp. 618–621 [in Russian].
  2. Rakhmanov R. S., Srebrianskiy G. A. (2011). Nekotorye perspektivy povysheniia iznosostoikosti trubopressovogo instrumenta [Some prospects of improving the wear resistance of tube press tool]. Metallurgicheskaia i gornorudnaia promyshlennost’, no. 4, pp. 97–100 [in Russian].
  3. Srebrianskiy G. A., Stovpchenko A. P. (2006). Amorfnye splavy – perspektivnyi material dlia ispol’zovaniia v zheleznodorozhnom transporte [Amorphous alloys are a promising material for use in rail transport]. LXVI Mezhdunarodnaia nauchno-prakticheskaia konferentsiia. Tezisy dokladov, Dnepropetrovsk, pp. 374–375 [in Russian].
  4. Starodubtsev Yu. N., Belozerov V. Ya. (2009). Amorfnye metallicheskie materialy [Amorphous metallic materials]. Silovaia elektronika, no. 2, pp. 86–89 [in Russian].
  5. Chernov V. S., Ivanov O. G., Evteev A. S. (2001). Osnovnye usloviia stabil’nosti tekhnologii proizvodstva mernykh lent iz amorfnykh splavov [The basic conditions of stability of the production technology of dimensional ribbons of amorphous alloys]. Stal’, no. 4, pp. 67–69 [in Russian].
  6. Liebermann H. H. (1979). Manufacture of amorphous alloy ribbons. IEEE Trans. On Magn., V. 5, no. 6, pp. 1393–1397 [in English].
  7. Pavuna D. (1981). Production of metallic glass ribbons by the chill-black melt-spinning technique in stabilized laboratory conditions. J. Mater. Sci., no. 16, pp. 2419–2433 [in English].
  8. Das S. K., Davis L. A. (1988). High Performance Aerospace Alloys via Rapid Solidifcation Processing. Mat. Sci. Eng., no. 98, pp.1–12 [in English].
  9. U. S. Pat. no. 6749700, МПК7 С 22 С 45/00. Method for producing amorphous alloy ribbon and method for production nanocrystalline alloy ribbon with same / Sunakawa J., Bizen Y., June 15, 2004 [in English].
  10. Selivanov M. V., Davydova N. M. (1988). Mikrokristallicheskie splavy za rubezhom [Microcrystalline alloys abroad]. V sb. Chernaia metallurgiia, no. 1, pp. 27–43 [in Russian].
  11. Starodubtsev Yu. N., Belozerov V. Ya. (2002). Magnitnye svoistva amorfnykh i nanokristallicheskikh splavov [Magnetic properties of amorphous and nanocrystalline alloys]. Ekaterinburg: Izd-vo UrGU, 380 p. [in Russian].
  12. Danilova I. I., Markin V. V., Smolyakova O. V., Roschin V. Y., Ilyin, S. I., Goithenberg Yu. N. (2008). Proizvodstvo amorfnoi i nanokristallicheskoi lenty metodom lit’ia na odnovalkovoi MNLZ [The production of amorphous and nanocrystalline ribbon by casting on one-roll continuous casting machine]. Vestnik YUrGU, no. 9, pp. 16–21 [in Russian].
  13. Hunkin V. E. (1991). Metallurgicheskie osobennosti podgotovki amorfziruiushchikhsia splavov dlia polucheniia amorfnoi lenty: Aftoref. dis. na soiskanie nauchn. stepeni kand. tekhn. nauk [Metallurgical features of preparation of amorphous alloys for amorphous tape production. Extended abstract of candidate’s thesis]. Cheliabinsk, 25 p. [in Russian].
  14. Pat. KZ (B) (11) 2031, C22C45/02, Respublika Kazakhstan. Shikhta dlia polucheniia amorfnykh magnitomiagkikh splavov [The mixture to obtain the amorphous magnetic alloys]. Levintov B. L., Bashaeva L. A., Kovneristy Y. K. et al. publ. 15.06.95, bull. no. 2 [in Russian].
  15. Pat. no. 2383652 Russian Federation, IPC C22C 45/04, C22C 19/07. Tonkaia lenta, vypolnennaia iz amorfnogo termomagnitnogo materiala [Thin ribbon made of amorphous thermo-magnetic material]. Markin V. V., Danilova I. I.: publ. 10.03.2010, bull. no. 7 [in Russian].
  16. Zaiavka Frantsii, no. 2587038, C22C 33/06, H01F 1/04, 1987. Sposob polucheniia splavov ferrobora, v osnovnom, dlia proizvodstva amorfnykh magnitnykh splavov [A method of obtaining ferroboron alloys, mainly for the production of amorphous magnetic alloys]. [in Russian].
  17. Pat. no. 2418091 Russian Federation, C22C 45/04, C22C 19/05. Amorfnyi, iznosostoikii nanostrukturirovanyi splav na osnove nikelia sistemy Ni-Cr-Mo-WC [Amorphous wear-resistant alloy based on nickel system Ni-Cr-Mo-WC]. Farmakovsky B. V., Vasil’ev A. F., Gerasenkov D. A. et al., publ. 10.05.2011, bull. no. 13 [in Russian].
  18. Pat. no. 2260070 Russian Federation, C 22 C 33/04, 45/02, 45/04. Sposob polucheniia slitkov iskhodnogo splava dlia polucheniia amorfnykh lent [Method of obtaining ingots of initial alloy for production of amorphous ribbons]. Ponomarev V. A., Ivanov O. G., Chernov V. S. at al., publ. 10.09.2005, bull. no. 25 [in Russian].
  19. Pat. no. 1638177 USSR, MKI С21С 7/00, С22В 8/10. Sposob proizvodstva slitkov [Method of production of ingots]. Kalashnikov A. I., Ten E. B., Kimanov B. M. et al., publ. 30.01.91. Bull. no. 12 [in Russian].
  20. Piwinskiy Yu. E., Romashin A. G. (1974). Kvartsevaia keramika [Quartz ceramics]. Moscow: Metallurgiia, 264 p. [in Russian].
  21. Verkhovlyuk A. M., Bespaluy, A. A. (2003). Smachivanie ogneupornykh materialov vysokotemperaturnymi metallami i splavami [Wetting of refractory materials by high temperature metals and alloys]. Protsessy lit’ia, no. 2, pp. 22–31 [in Russian].
  22. Srebrianskiy G. A., Belousov V. V., Yurich P. Yu. (2010). Teoreticheskie osnovy konstruktsii diska-kholodil’nika ustanovok dlia polucheniia amorfnykh splavov [Theoretical bases of the design of the disc-refrigerator units for obtaining amorphous alloys]. Stal’, no. 8, pp. 79–82 [in Russian].