The current state and the prospects for the development of high-plasticity ultrastrong Fe-Mn-Al-C steels

Шрифт:
305

https://doi.org/10.15407/steelcast2021.02.101

Met. litʹe Ukr., 2021, Tom 29, №2, P. 113-121

O.P. Verzilov1, PhD (Engin.), Senior Researcher, e-mail: verzilovalex@gmail.com, https://orcid.org/0000-0003-0463-5006
M.M. Voron1, PhD (Engin.), Senior Researcher, е-mail: mihail.voron@gmail.com, https://orcid.org/0000-0002-0804-9496
A.Yu. Semenko1, PhD (Engin.), Researcher,e-mail: semenko.au@gmail.com, https://orcid.org/0000-0002-0448-1636
V.Zh. Shemet2, PhD in Chemical Engineering, Senior Lecturer, е-mail: volodymyrshemet@gmail.com, https://orcid.org/0000-0002-9616-491X

1Physico-technological Institute of Metals and Alloys of the NAS of Ukraine (Kyiv, Ukraine)
2National Technical University of Ukraine "Igor Sikorsky Kyiv Polytechnic Institute" (Kyiv, Ukraine)

Received 28.06.2021

UDK 69.14.018.298:621.789

The article considers the physicochemical properties and prospects of using austenitic steels with high manganese content. Detailed analysis of publications gives an idea of the current state of development of alloys based on Fe-Mn-Al-C, reveals insufficiently studied problems and identifies promising areas for further research.
The influence of alloying elements on the strengthening mechanisms of high-manganese austenitic Fe-Mn-Al-C steels is shown, and the principle of choosing the optimal ratio between the main components of Mn, C and Al alloy to ensure low density and high strength and ductility is considered. The influence of rare earth elements such as Ce, La and Y on the formation of the microstructure of such steels is considered. The general characteristic of their mechanical properties steels is given, and also the detailed review of influence of Al, Mn, Cr on their is given.
Particular attention is paid to the mechanism of к-carbides release in alloys during their heat treatment. Promising directions of research of Fe-Mn-Al-C steels from the point of view of mechanisms of their strengthening due to formation of к-carbides at cooling and heat treatment are offered.
It is shown how the cooling rate affects the phase composition, microstructure and mechanical properties of these steels. It is noted that water cooling can prevent the excessive formation of к-carbides under certain conditions (such as geometric dimensions and Al content).
It is determined that the development of composition, smelting technologies, out-of-furnace and subsequent thermomechanical processing of high-strength Fe-Mn-Al-C steels is a timely comprehensive study aimed at increasing the competitiveness of the Ukrainian metallurgical industry by developing the range of steel products, reducing the amount of harmful emissions of combustion products, saving minerals by reducing fuel consumption.

Keywords: Fe-Mn-Al-C alloy, austenite, ferrite, к-carbides, non-metallic inclusions, high-manganese steels.

References

1. Antonaglia, J., Xie, X., Tang, Z. et al. (2014). Erratum to: Temperature Effects on Deformation and Serration Behavior of High Entropy Alloys (HEAs). JOM 66, 2593 (2014), doi: https://doi.org/10.1007/s11837-014-1190-x
https://doi.org/10.1007/s11837-014-1190-x
 
2. Zhang, Y., Zuo, T.T., Tang, Z., Gao, M.C., Dahmen, K.A., Liaw, P.K., Lu, Z.P. (2014). Microstructures and properties of high entropy alloys. Progress in Materials Science, vol. 61, pp. 1-93, doi: https://doi.org/10.1016/j.pmatsci.2013.10.001
https://doi.org/10.1016/j.pmatsci.2013.10.001
 
3. Guo, S., Ng, Ch., Lu, J., Liu, C.T. (2011). Effect of valence electron concentration on stability of fcc or bcc phase in high entropy alloys. Journal of Applied Physics 109, 103505, doi: https://doi.org/10.1063/1.3587228
https://doi.org/10.1063/1.3587228
 
4. Raabe, D., Springer, H., Gutierrez-Urrutia, I., Roters, F., Bausch, M., Seol, J.-B., Koyama, M., Choi, P.-P., Tsuzaki, K. (2014). Alloy design, combinatorial synthesis, and microstructure - property relations for low-density Fe-Mn-Al-C austenitic steels. JOM 66, pp. 1845-1856, doi: https://doi.org/10.1007/s11837-014-1032-x
https://doi.org/10.1007/s11837-014-1032-x
 
5. Raabe, D., Tasan, C.C., Springer, H., Bausch, M. (2015). From High-Entropy Alloys to High-Entropy Steels. Steel Research Int., vol. 86, iss. 10, pp. 1127-1138, doi: https://doi.org/10.1002/srin.201500133
https://doi.org/10.1002/srin.201500133
 
6. Frommeyer, G.. Brüx, U. (2006). Microstructure and Mechanical Properties of High-strength Fe-Mn-Al-C Light-Weight TRIPLEX Steels. Steel Res. Int., vol. 77, iss. 9-10, pp. 627-633, doi: https://doi.org/10.1002/srin.200606440
https://doi.org/10.1002/srin.200606440
 
7. Grässel, O., Frommeyer, G., Derder, C., Hofmann, H. (1997). Phase Transformations and Mechanical Properties of Fe-Mn-Si Al TRIP-Steels. J. Phys. IV France, vol. 7, pp. 383-388, doi: https://doi.org/10.1051/jp4:1997560
https://doi.org/10.1051/jp4:1997560
 
8. Han, J., Kang, S.-H., Lee, S.-J., Kawasaki, M., Lee, H.-J., Ponge, D., Raabe, D., Lee, Y.-K. (2017). Superplasticity in a lean Fe-Mn-Al steel. Nature Communications, 8 (1), p. 751, doi: https://doi.org/10.1038/s41467-017-00814-y
https://doi.org/10.1038/s41467-017-00814-y
 
9. Haase, Ch., Barrales-Mora, L.A. (2019). From High-Manganese Steels to Advanced High-Entropy Alloys. Metals, 9 (7), 726, doi: https://doi.org/10.3390/met9070726
https://doi.org/10.3390/met9070726
 
10. Alekseenko, M.F., Krivonogov, G.S., Kozyreva, L.G., Kachanova, I.M., Arapova, L.V. (1972). Phase composition, structure, and properties of low-density steel 9G28Yu9MVB. Metal Science and Heat Treatment, 14 (3), pp. 187-189, doi: https://doi.org/10.1007/BF00690758
https://doi.org/10.1007/BF00690758
 
11. Frommeyer, G., Drewes, E.J., Engl, B. (2002). Physical and mechanical properties of iron-aluminium-(Mn, Si) lightweight steels. Revue de Métallurgie, 97 (10), pp. 1245-1253, doi: https://doi.org/10.1051/metal:2000110
https://doi.org/10.1051/metal:2000110
 
12. Raabe, D., Springer, H., Gutierrez-Urrutia, I., Roters, F., Bausch, M., Seol, J.B., Koyama, M., Choi, P.P., Tsuzaki, K. (2014). Alloy Design, Combinatorial Synthesis, and Microstructure - Property Relations for Low-Density Fe-Mn-Al-C. Austenitic Steels. JOM, vol. 66, iss. 9, pp. 1845-1856, doi: https://doi.org/10.1007/s11837-014-1032-x
https://doi.org/10.1007/s11837-014-1032-x
 
13. Sutou, Y., Kamiya, N., Umino, R., Ohnuma, I., Ishida, K. (2010). High-strength Fe-20Mn-Al-C-based Alloys with Low Density. ISIJ International, vol. 50, iss. 6, pp. 893-899, doi: https://doi.org/10.2355/isijinternational.50.893
https://doi.org/10.2355/isijinternational.50.893
 
14. Gutierrez-Urrutia, I., Raabe, D. (2014). High strength and ductile low density austenitic FeMnAlC steels: Simplex and alloys strengthened by nanoscale ordered carbides. Materials Science and Technology, vol. 30, iss. 9, pp. 1099-1104, doi: https://doi.org/10.1179/1743284714Y.0000000515
https://doi.org/10.1179/1743284714Y.0000000515
 
15. Sohn, S.S., Song, H., Kwak, J.H., Lee, S. (2017). Dramatic improvement of strain hardening and ductility to 95 % in highly deformable high-strength duplex lightweight steels. Scientific Reports, 7 (1), p. 1927, doi: https://doi.org/10.1038/s41598-017-02183-4
https://doi.org/10.1038/s41598-017-02183-4
 
16. Sohn, S.S., Song, H., Jo, M.C., Song, T., Kim, H.S., Lee, S. (2017). Novel 1.5 GPa strength with 50%-ductility by transformation induced plasticity of non-recrystallized austenite in duplex steels. Scientific Reports, 7 (1), p. 1255, doi: ttps://doi.org/10.1038/s41598-017-01514-9
https://doi.org/10.1038/s41598-017-01514-9
 
17. Yoo, J.D., Hwang, S.W., Park, K.T. (2009). Origin of Extended Tensile Ductility of a Fe-28Mn-10Al-1C Steel. Metallurgical and Materials Transactions A, 40 (7), pp. 1520-1523, doi: https://doi.org/10.1007/s11661-009-9862-9
https://doi.org/10.1007/s11661-009-9862-9
 
18. Yang, W.S., Wu, T.B., Wan, C.M. (1990). Structure determination of the needle like precipitates in an alloy of Fe"29Mn"8Al"0.06C. Scripta Metallurgica et Materialia, vol. 24, iss. 5, pp. 895-900, doi: https://doi.org/10.1016/0956-716X(90)90132-Z
https://doi.org/10.1016/0956-716X(90)90132-Z
 
19. Ishida, K., Ohtani, H., Satoh, N., Kainuma, R., Nishizawa, T. (1990). Phase Equilibria in Fe-Mn-Al-C Alloys. ISIJ International, vol. 30, iss. 8, pp. 680-686, doi: https://doi.org/10.2355/isijinternational.30.680
https://doi.org/10.2355/isijinternational.30.680
 
20. Goretskii, G., Gorev, K. (1990). Phase Equilibria in the Fe-Mn-Al-C Alloys. Izv. Akad. Nauk SSSR, Met., (2), pp. 218-222.
 
21. Charles, J., Berghezan, A. (1981). Nickel-free austenitic steels for cryogenic applications: The Fe-23% Mn-5% Al-0.2% C alloys. Cryogenics, vol. 2, iss. 5, pp. 278-280, doi: https://doi.org/10.1016/0011-2275(81)90003-5
https://doi.org/10.1016/0011-2275(81)90003-5
 
22. Shih, C., Zhang, Y., Xu, Y., Li, Y. (1984). An Fe-Mn-Al Austenitic Steel for Cryogenic Uses, in Advances in Cryogenic Engineering Materials: Volume 30, A.F. Clark and R.P. Reed, Editors. 1984, Springer US: Boston, MA, pp. 161-168.
https://doi.org/10.1007/978-1-4613-9868-4_20
 
23. Frommeyer, G., Drewes, E.J., Engl, B. (2002). Physical and mechanical properties of iron-aluminium-(Mn, Si) lightweight steels. Revue de Métallurgie, vol. 97, no. 10, pp. 1245-1253, doi: https://doi.org/10.1051/metal:2000110
https://doi.org/10.1051/metal:2000110
 
24. Shao, C.W., Zhang, P., Liu, R., Zhang, Z.J., Pang, J.C., Zhang, Z.F. (2016). Low-cycle and extremely-low-cycle fatigue behaviors of high-Mn austenitic TRIP/TWIP alloys: Property evaluation, damage mechanisms and life prediction. Acta Materialia, vol. 103, pp. 781-795, doi: https://doi.org/10.1016/j.actamat.2015.11.015
https://doi.org/10.1016/j.actamat.2015.11.015
 
25. Kayak, G.L. (1969). Fe-Mn-Al precipitation-hardening austenitic alloys. Metal Science and Heat Treatment, vol. 11, iss. 2, pp. 95-97, doi: https://doi.org/10.1007/BF00652271
https://doi.org/10.1007/BF00652271
 
26. Wong, S.L., Madivala, M., Prahl, U., Roters, F., Raabe, D. (2016). A crystal plasticity model for twinning- and transformation induced plasticity. Acta Materialia, vol. 118, pp. 140-151, doi: https://doi.org/10.1016/j.actamat.2016.07.032
https://doi.org/10.1016/j.actamat.2016.07.032
 
27. Sato, A., Soma, K., Mori, T. (1982). Hardening due to preexisting ε-Martensite in an Fe-30Mn-1Si alloy single crystal. Acta Metallurgica, vol. 30, iss. 10, pp. 1901-1907, doi: https://doi.org/10.1016/0001-6160(82)90030-X
https://doi.org/10.1016/0001-6160(82)90030-X
 
28. Wang, R., Straszheim, M.J., Rapp, R.A. (1984). A high-temperature oxidation-resistant Fe-Mn-Al-Si alloy. Oxidation of Metals, 21 (1-2), pp. 71-79, doi: https://doi.org/10.1007/BF00659468
https://doi.org/10.1007/BF00659468
 
29. Kao, C.H., Wan, C.M. (1988). Effect of manganese on the oxidation of Fe-Mn-Al-C alloys. Journal of Materials Science, 23 (2), pp. 744-752, doi: https://doi.org/10.1007/BF01174715
https://doi.org/10.1007/BF01174715
 
30. Chen, L., Zhao, Y., Qin, X. (2013). Some aspects of high manganese twinning-induced plasticity (TWIP) steel, a review. Acta Metallurgica Sinica (English Letters), 26 (1), pp. 1-15, doi: https://doi.org/10.1007/s40195-012-0501-x
https://doi.org/10.1007/s40195-012-0501-x
 
31. Heo, Y.-U., Song, Y.-Y., Park, S.-J., Bhadeshia, H.K.D.H., Suh, D.-W. (2012). Influence of Silicon in Low Density Fe-C-Mn-Al Steel. Metallurgical and Materials Transactions A, 43 (6), pp. 1731-1735, doi: https://doi.org/10.1007/s11661-012-1149-x
https://doi.org/10.1007/s11661-012-1149-x
 
32. Bartlett, L.N., Van Aken, D.C., Medvedeva, J., Isheim, D., Medvedeva, N.I., Song, K. (2014). An Atom Probe Study of Kappa Carbide Precipitation and the Effect of Silicon Addition. Metallurgical and Materials Transactions A, 45 (5), pp. 2421-2435, doi: https://doi.org/10.1007/s11661-014-2187-3
https://doi.org/10.1007/s11661-014-2187-3
 
33. Acselrad, O., Simao, R.A., Pereira, L.C., Achete, C.A., Kalashnikov, I.S., Silva, E.M. (2002). Phase transformations in FeMnAlC austenitic steels with Si addition. Metallurgical and Materials Transactions A, 33 (11), pp. 3569-3573, doi: https://doi.org/10.1007/s11661-002-0345-5
https://doi.org/10.1007/s11661-002-0345-5
 
34. Cheng, W.-C., Cheng, C.-Y., Hsu, C.-W., Laughlin, D.E. (2015). Phase transformation of the L12 phase to kappa-carbide after spinodal decomposition and ordering in an Fe-C-Mn-Al austenitic steel. Materials Science and Engineering: A, vol. 642, pp. 128-135, doi: https://doi.org/10.1016/j.msea.2015.06.096
https://doi.org/10.1016/j.msea.2015.06.096
 
35. Ikarashi, Y., Sato, K., Yamazaki, T., Inoue, Y., Yamanaka, M. (1992). Age-hardening and formation of modulated structures in austenitic Fe-Mn-Al-C alloys. Journal of Materials Science Letters, 11 (11), pp. 733-735, doi: https://doi.org/10.1007/BF00729475
https://doi.org/10.1007/BF00729475
 
36. Sato, K., Tagawa, K., Inoue, Y. (1990). Modulated structure and magnetic properties of age-hardenable Fe-Mn-Al-C alloys. Metallurgical Transactions A, 21 (1), pp. 5-11, doi: https://doi.org/10.1007/BF02656419
https://doi.org/10.1007/BF02656419
 
37. Sato, K., Tagawa, K., Inoue, Y. (1989). Spinodal decomposition and mechanical properties of an austenitic Fe-30wt.%Mn 9wt.%Al-0.9wt.%C alloy. Materials Science and Engineering: A, vol. 111 (0), pp. 45-50, doi: https://doi.org/10.1016/0921-5093(89)90196-2
https://doi.org/10.1016/0921-5093(89)90196-2
 
38. Han, K.H., Choo, W.K., Laughlin, D.E. (1988). A further contribution to the phase constitution in (Fe0.65Mn0.35)0.83Al0.17-XC pseudobinary system. Scripta Metallurgica, vol. 22, iss. 12, pp. 1873-1878, doi: https://doi.org/10.1016/S0036-9748(88)80229-1
https://doi.org/10.1016/S0036-9748(88)80229-1
 
39. Li, M.C., Chang, H., Kao, P.W., Gan, D. (1999). The effect of Mn and Al contents on the solvus of κ phase in austenitic Fe-Mn Al-C alloys. Materials Chemistry and Physics, vol. 59, iss. 1, pp. 96-99, doi: https://doi.org/10.1016/S0254-584(99)00026-7
https://doi.org/10.1016/S0254-0584(99)00026-7
 
40. Tsay, G., Tuan, Y., Lin, C., Chao, C., Liu, T. (2011). Effect of carbon on spinodal decomposition in Fe-26Mn-20Al-C alloys. Materials Transactions, vol. 52, iss. 3, pp. 521-525, doi: https://doi.org/10.2320/matertrans.M2010255
https://doi.org/10.2320/matertrans.M2010255
 
41. Tjong, S.C. (1990). Electron microscope observations of phase decompositions in an austenitic Fe-8.7Al-29.7Mn-1.04C alloy. Materials Characterization, vol. 24, iss. 3, pp. 275-292, doi: https://doi.org/10.1016/1044-5803(90)90055-O
https://doi.org/10.1016/1044-5803(90)90055-O
 
42. Rigaud, V., Daloz, D., Drillet, J., Perlade, A., Maugis, P., Lesoult, G. (2007). Phases Equilibrium Study in Quaternary Iron-rich Fe-Mn-Al-C Alloys. ISIJ International, vol. 47, iss. 6, pp. 898-906, doi: https://doi.org/10.2355/isijinternational.47.898
https://doi.org/10.2355/isijinternational.47.898
 
43. Moon, J., Park, S.-J., Jang, J.H., Lee, T.-H., Lee, C.-H., Hong, H.-U., Suh, D.-W., Kim, S.H., Han, H.N., Lee, B.H. (2017). Atomistic investigations of κ-carbide precipitation in austenitic Fe-Mn-Al-C lightweight steels and the effect of Mo addition. Scripta Materialia, vol. 127, pp. 97-101, doi: https://doi.org/10.1016/j.scriptamat.2016.08.036
https://doi.org/10.1016/j.scriptamat.2016.08.036
 
44. Cooman, B.C., Chen, L., Kim, H.S., Estrin, Y., Kim, S.K., Voswinckel, H. (2009). State-of-the-Science of High Manganese TWIP Steels for Automotive Applications, in Microstructure and Texture in Steels, A. Haldar, S. Suwas, and D. Bhattacharjee, Editors. 2009, Springer London, pp. 165-183.
https://doi.org/10.1007/978-1-84882-454-6_10
 
45. Raabe, D., Springer, H., Gutierrez-Urrutia, I., Roters, F., Bausch, M., Seol, J.B., Koyama, M., Choi, P.P., Tsuzaki, K. (2014). Alloy Design, Combinatorial Synthesis, and Microstructure-Property Relations for Low-Density Fe-Mn-Al-C Austenitic Steels. JOM, vol., 66, iss. 9, pp. 1845-1856, doi: https://doi.org/10.1007/s11837-014-1032-x
https://doi.org/10.1007/s11837-014-1032-x
 
46. Frommeyer, G., Drewes, E.J., Engl, B. (2000). Physical and mechanical properties of iron-aluminium-(Mn, Si) lightweight steels. Rev. Met. Paris, vol. 97, no. 10, pp. 1245-1253, doi: https://doi.org/10.1051/metal:2000110
https://doi.org/10.1051/metal:2000110
 
47. Sutou, Y, Kamiya, N, Umino, R, Ohnuma, L., Ishida, K. (2010). High-strength Fe-20Mn-Al-C-based Alloys with Low Density. ISIJ International, vol. 50, iss. 6, pp. 893-899, doi: https://doi.org/10.2355/isijinternational.50.893
https://doi.org/10.2355/isijinternational.50.893
 
48. Park, K.T., Jin, K.G., Han, S.H., Hwang, S.W., Choi, K.Y., Lee, C.S. (2010). Stacking fault energy and plastic deformation of fully austenitic high manganese steels: Effect of Al addition. Materials science and engineering A, vol. 527, iss. 16-17 (25 June 2010), pp. 3651-3661, doi: https://doi.org/10.1016/j.msea.2010.02.058
https://doi.org/10.1016/j.msea.2010.02.058
 
49. Lai, H.J., Wan, C.M. (1989). The study of work hardening in Fe-Mn-Al-C alloys. J. Mater. Sci. 24, pp. 2449-2453, doi: https://doi.org/10.1007/BF01174510
https://doi.org/10.1007/BF01174510
 
50. Chang, S.C., Hsiau, Y.H., Jahn, M.T. (1989). Tensile and fatigue properties of Fe-Mn-Al-C alloys. J. Mater. Sci. 24, pp. 1117-1120, doi: https://doi.org/10.1007/BF01148807
https://doi.org/10.1007/BF01148807
 
51. Grassel, O, Kruger, L, Frommeyer, G, Meyer, L.W. (2000). High strength Fe-Mn-(Al, Si) TRIP/TWIP steels development-properties-application. International Journal of Plasticity, vol. 16, iss. 10-11, pp. 1391-1409, doi: https://doi.org/10.1016/S0749-6419(00)00015-2
https://doi.org/10.1016/S0749-6419(00)00015-2
 
52. Haakonsen, F. (2009). Optimizing of Strømhard Austenitic Manganese Steel. Ph.D. thesis, NTNU, Trondheim, Norway, May 2009.
 
53. Bartlett, L.N., Avila, B.R. (2016). Grain Refinement in Lightweight Advanced High-Strength Steel Castings. International Journal of Metalcasting, vol. 10 (4), pp. 401-420, doi: https://doi.org/10.1007/s40962-016-0048-0
https://doi.org/10.1007/s40962-016-0048-0
 
54. Heo, Y.U., Lee, S.Y., Cho, J.W., Heo, N.H. (2016). Effects of Ce and P addition on ascast structure and formation mechanism of cerium compounds in Ce-added TWIP steels. Mater. Charact., vol. 120, pp. 234-243, doi: https://doi.org/10.1016/j.matchar.2016.09.007
https://doi.org/10.1016/j.matchar.2016.09.007
 
55. Ji, Y., Zhang, M.X., Ren, H. (2018). Roles of Lanthanum and Cerium in Grain Refinement of Steels during Solidification. Metals, vol. 8 (11), p. 884, doi: https://doi.org/10.3390/met8110884
https://doi.org/10.3390/met8110884
 
56. Li, G., Lan, P., Zang, J., Wu, G. (2020). Refinement of the Solidification Structure of Austenitic Fe-Mn-C-Al TWIP Steel. Metallurgical and Materials Transactions B, vol. 51, pp. 452-466, doi: https://doi.org/10.1007/s11663-020-01773-4
https://doi.org/10.1007/s11663-020-01773-4
 
57. Frommeyer, G., Brüx, U., Neumann, P. (2003). Supra-Ductile and High-Strength Manganese-TRIP/TWIP Steels for High Energy Absorption Purposes. ISIJ International, vol 43, iss. 3, pp. 438-446, doi: https://doi.org/10.2355/isijinternational.43.438
https://doi.org/10.2355/isijinternational.43.438
 
58. Storchak, N.A., Drachinskaya, A.G. (1977). Nature of the work-hardening Fe-Mn-Al-C alloys during aging. Phys. Met. and Metall., vol. 44 (2), pp. 123-130.
 
59. Kalashnikov, I., Shalkevich, A., Acselrad, O., Pereira, L.C. (2000). Chemical composition optimization for austenitic steels of the Fe-Mn-Al-C system. Journal of Materials Engineering and Performance, 9, pp. 597-602, doi: https://doi.org/10.1361/105994900770345430
https://doi.org/10.1361/105994900770345430
 
60. Krivonogov, G.S., Alekseyenko, M.F., Solov'yeva, G.G. (1975). Phase Transformation Kinetics in steel 9G28Yu9MVB. Fiz. Metal. Metalloved, vol. 39, no. 4, pp. 775-781.
 
61. Bentley, A.P. (1986). Ordering in Fe-Mn-Al-C austenite. Journal of Materials Science Letters 5, pp. 907-908, doi: https://doi.org/10.1007/BF01729270
https://doi.org/10.1007/BF01729270
 
62. Sato, K., Tagawa, K., Inoue, Y. (1990). Modulated structure and magnetic properties of age-hardenable Fe-Mn-Al-C alloys. Metallurgical Transactions A 21, pp. 5-11, doi: https://doi.org/10.1007/BF02656419
https://doi.org/10.1007/BF02656419
 
63. Ishida, K., Ohtani, H., Satoh, N., Kainuma, R., Nishizawa, T. (1990). Phase Equilibria in Fe-Mn-Al-C Alloys. ISIJ International, vol. 30, iss. 8, pp. 680-686, doi: https://doi.org/10.2355/isijinternational.30.680
https://doi.org/10.2355/isijinternational.30.680
 
64. Han, K.H., Choo, W.K. (1989). Phase decomposition of rapidly solidified Fe-Mn-Al-C austenitic alloys. Metallurgical Transactions A 20, pp. 205-214, doi: https://doi.org/10.1007/BF02670246
https://doi.org/10.1007/BF02670246
 
65. Sato, K., Tagawa, K., Inoue, Y. (1990). Modulated structure and magnetic properties of age-hardenable Fe-Mn-Al-C alloys. Metallurgical Transactions A 21, pp. 5-11, doi: https://doi.org/10.1007/BF02656419
https://doi.org/10.1007/BF02656419
 
66. Kimura, Y., Hayashi, K., Handa, K., Mishima, Y. (2002). Microstructural control for strengthening the g-Fe/E21-(Fe, Mn)3AlCx alloys. Materials Science and Engineering: A, vols. 329-331, pp. 680-685, doi: https://doi.org/10.1016/S0921-5093(01)01607-0
https://doi.org/10.1016/S0921-5093(01)01607-0
 
67. Park, J.Y., Park, S-J., Lee, J.-H., Moon, J., Lee, T.-H., Jeong, K.J., Han, H.N., Shin, J.-H. (2017). Effect of Cooling Rate on the Microstructure and Mechanical Properties of Fe-Mn-Al-C Light-Weight Steels. Korean J. Met. Mater., vol. 55, no. 12, pp. 825-835, doi: https://doi.org/10.3365/KJMM.2017.55.12.825
https://doi.org/10.3365/KJMM.2017.55.12.825